Introduction to Probability Theory

9TH WEEK: MULTIDIMENSIONAL CONTINUOUS RANDOM VARIABLES.

Let us recall that by a 2-dimensional random variable we mean a (measurable) function

$$(X,Y):\Omega\to\mathbb{R}^2$$
,

where Ω is the sample space of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The **cumulative distribution function** (CDF) of (X, Y) is a function $F_{X,Y} : \mathbb{R}^2 \to [0, 1]$ defined as

$$F_{X,Y}(x,y) = \mathbb{P}(X \leqslant x, Y \leqslant y)$$
.

DEFINITION. If the CDF $F_{X,Y}$ of $(X,Y): \Omega \to \mathbb{R}^2$ can be written as

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t) ds dt$$

for some non-negative function $f_{X,Y}: \mathbb{R}^2 \to \mathbb{R}$, then we say that (X,Y) is (absolutely) continuous, and $f_{X,Y}$ is the density of (X,Y).

In such a case

$$f_{X,Y}(s,t) = \frac{\partial^2 F(x,y)}{\partial x \partial y}\Big|_{x=s,t=y},$$

for (nearly) all values of (s, t), and

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(s,t) ds dt = 1.$$

If (X,Y) is (absolutely) continuous, then the CDF and the density of X are given by

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,t)dt,$$

$$F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y),$$

while for Y analogous formulae are

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(s,y)ds$$

and

$$F_Y(y) = \lim_{x \to \infty} F_{X,Y}(x,y).$$

If $f_{X,Y}$ is the density of (X,Y), then for each (measurable) function $g:\mathbb{R}^2\to\mathbb{R}$ we have

$$\mathbb{E}g(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(s,t) f_{X,Y}(s,t) dt ds,$$

so, for instance,

$$\mathbb{E}X^{2}Y = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} s^{2}t f_{X,Y}(s,t) dt.$$

DEFINITION. Random variables X and Y are independent, if for every x and y,

$$F_{X,Y}(x,y) = F_X(x)F_Y(y).$$

Moreover, if $f_{X,Y}$ is the density of a continuous random variable (X,Y), then X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y),$$

for (nearly) all values of x i y.