Probabilistic Methods

Homework #8 Due: Thursday, December 19th

Problem 9

Let $p = n^{-\alpha}$ for some constant $\alpha \in (0, 1)$. Show that aas for every subset of vertices S of G(n, p) of size at most $(1 - \alpha)n^{\alpha}(\ln n - 3\ln \ln n)$, there exists a vertex $v \notin S$ which is adjacent to no vertices from S. From this fact deduce that aas G(n, p) contains an independent set of size at least $(1 - \alpha)n^{\alpha}(\ln n - 3\ln \ln n)$.

Problem 10

Let $p = n^{-\alpha}$ for some constant $\alpha \in (0, 1)$. Show that as G(n, p) contains an induced tree of size at least $(1 - \alpha)n^{\alpha}(\ln n - 3\ln \ln n)$, i.e. G(n, p) contains a connected subgraph on $(1 - \alpha)n^{\alpha}(\ln n - 3\ln \ln n)$ vertices which contains no cycles.

Remark Each tree contains a vertex of degree one.